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Concentrated solutions of block copolymers of polystyrene and polyisoprene have been quenched from a 
high temperature to a lower temperature. The changes in scattering intensity following such a quench were 
studied using time-resolved small-angle neutron scattering. From these data the rate constant for the 
relaxation process, R(Q), was obtained as a function of scattering vector Q. For high concentrations, a 
maximum in R(Q) as a function of Qz was observed as predicted by a time-dependent Ginzburg-Landau 
model. Values of the Onsager coefficient Lo, extracted from these data were several orders of magnitude 
smaller than those for homopolymer blends. 
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INTRODUCTION 

The possible advantages obtainable by molecularly 
mixing two or more chemically distinct monomers to 
form a homogeneous blend have provoked much interest 
in the theory and experimentation on these systems. 
Considerable effort has been expended on thermo- 
dynamic descriptions of polymer blends ~-3, and this has 
led to experimental studies of the phase diagrams and 
the factors controlling miscibility 4-6. A notable feature 
of this work has been the interest in the kinetics of phase 
separation of homopolymer blends. Such studies provide 
an insight into the mechanism of phase separation and 
are a link between thermodynamics and dynamics of 
polymer motion. Much interpretation of phase-separa- 
tion kinetics has resulted from a straightforward applica- 
tion of the theory v of spinodal decomposition originally 
applied to metal alloys. Significant extensions specific to 
polymer systems that bring in reptation theory have been 
made by de Gennes 8, Pincus 9 and Binder ~°. 

Block copolymers differ from homopolymer blends due 
to the molecular connectivity between the chemically 
distinct blocks that make up the molecule. This connec- 
tivity considerably alters the thermodynamics and kine- 
tics of phase separation due to the reduction in entropy 
relative to the equivalent homopolymer blend. The most 
obvious effect of this connectivity is in the formation 
of microphase-separated domains 1~ when the thermo- 
dynamic driving force for demixing exceeds a critical 
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value. Additionally, the connectivity of block copolymers 
means that the scattering law in the homogeneous, 
disordered (usually high-temperature) phase is radically 
different from that of a homopolymer blend 12-14. Hence, 
rather than a continuous decrease in scattered intensity 
(X-rays, neutrons) with increase in scattering vector Q, 
as observed for homopolymers, a maximum at a finite 
Q value is seen for block copolymers. This was termed 
a 'correlation hole effect' by de Gennes, and was discussed 
in detail by Leibler using the random-phase approxima- 
tion (RPA) 12. Subsequently the problem has been 
analysed in more detail by Fredrickson and Helfand x3 
and others 14. Furthermore, block copolymer types 
other than linear diblocks and mixtures of copolymers 
with homopolymers have also been discussed and the 
scattering laws in the homogeneous one-phase region 
reported 15. 

Experimental studies utilizing the RPA have been 
limited, the earliest reported results being those of 
Hashimoto ~6 on a linear diblock. In an earlier paper 17 
we discussed very concentrated solutions of block 
copolymers in the light of RPA theory. Star block 
copolymers have also been examined both in the bulk 
state and dissolved in a non-selective solvent 18'~°. 

Studies of the kinetics of phase transitions in block 
copolymers are sparse. To our knowledge only one 
detailed report of the order-disorder transition has been 
published 2°. However, it is clear that other data exist 
but have yet to be thoroughly discussed 2~. This sparsity 
of data may be in part due to the spatial extent of the 
concentration fluctuations driving the phase-separation 
process. In homopolymer blends these rapidly grow to 
dimensions observable by small-angle light scattering, 
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whereas the connectivity in block copolymers restricts 
these fluctuations to colloidal dimensions (~200A). 
Consequently, observation calls for small-angle X-ray or 
neutron scattering (SAXS or SANS). In this paper we 
present results obtained by time-resolved SANS from 
very concentrated solutions of a styrene-isoprene linear 
diblock copolymer on either sudden cooling from a 
high-temperature homogeneous disordered phase to a 
lower temperature in the disordered phase or a deep 
quench from the high-temperature phase into the ordered 
phase. We demonstrate the use of isotopic labelling to 
improve the signal-to-noise ratio in SANS and outline 
the general technique in time-resolved small-angle 
scattering experiments. The data are analysed by a 
generalized time-dependent Ginzburg-Landau model 
of microphase-separation kinetics proposed by Hashi- 
moto 21 for block copolymer systems. 

THEORY 

The phase state of a block copolymer may be described 
by a local order parameter specified for one component 
~k(r). This order parameter is the difference between the 
average monomer unit density in the homogeneous phase 
and the local density of the same monomer units. In the 
one-phase disordered region, ~k(r)= 0. As the system 
undergoes phase separation, ~(r) fluctuates markedly 
from 0, and the range of these fluctuations can be 
described by a density-density correlation function: 

S(r -- r') ~ (~(r)~(r')) (1) 

On the basis of being in qualitative agreement with the 
features observed experimentally, Hashimoto21 proposed 
that the time variation of the order parameter in a block 
copolymer system quenched to a lower temperature from 
an initially homogeneous state is given by a time- 
dependent Ginzburg-Landau theory 22. The equation 
describing this is a diffusion equation of the Langevin 
type, which in reciprocal space is: 

de(Q, t)/dt = LoQ2~b(Q, t ) [ -S (Q)  -1] (2) 

where ~(Q, t) is the local order parameter at time t after 
the quench, L o is an Onsager coefficient connecting the 
diffusive flux ofcopolymer molecules to the local chemical 
potential, S(Q) is the Fourier transform of the density- 
density correlation function (i.e. the scattering law) for 
the homogeneous state, and Q is the scattering vector 
((4z~/2) sin 0 for radiation of wavelength 2 and scattering 
angle 20). Therefore: 

~(Q, t) = ~(Q, O) exp[R(Q)t] (3) 

R(Q) = LoQ2[ -  S(Q) - 1] (4) 

Since 

then 

I ( Q )  = <I0(Q)I2> (5) 

I(Q, t) = I(Q, O) exp[2R(Q)t] (6) 

Thus, although the general form of the variation of 
scattered intensity with time at fixed Q following a quench 
is given by equation (6), the Q variation at a given time 
interval is determined by the scattering law, S(Q), in the 
homogeneous state. As remarked above, the random- 
phase approximation has been used to obtain theoretical 
expressions for S(Q). The original derivation of Leibler 12 

is most appropriate to the experiments to be discussed 
here, i.e. the weak segregation limit. Weak segregation 
implies that the density profile corresponding to the 
concentration fluctuations varies smoothly from region 
to region. Leibler's expression for S(Q) is: 

S ( Q )  = { [ S ' ( Q ) / W ( Q ) ]  - 2z}-' (7) 
where S'(Q) is the sum of the Fourier transforms of the 
individual density-density correlation functions in the 
block copolymer system and W(Q) is their determinant. 
The factor Z is the Flory-Huggins interaction parameter 
between the components of the block copolymer. For a 
diblock AB copolymer with the average composition of 
A blocks being ~bA, the final expression for S(Q) is: 

S(Q) = N/[F(x) - 2zN] (8) 

where N = degree of polymerization of block copolymer 
and: 

F(x) = g(1, x)/g((an, x)g(4~B, X) 

-- 0.251g(1, X) -- g(~b A, x) - g(~b B, x)] 2 (9) 

Here g(~i, x) is the Debye function for the scattering from 
a single block copolymer molecule, with volume fraction 
of the component being ~i: 

g(c~ i, x) = (2/x2)[c~ix + exp(-~b,x) - 1] (10) 

and x = Q2R~ with R, as the radius of gyration of the 
whole block copolymer molecule. 

The form and dependence of equation (8) on R,, N 
and g have been much discussed in other publica- 
tions 1z'15'23. Essentially S(Q) has a broad maximum at 
Qmax "~ 2/Rg, the breadth of which is determined by X. As 

increases (thermodynamically poorer situations) the 
amplitude of the scattering increases and the peak width 
narrows. At the spinodal point equation (8) diverges and 
is no longer a true description of the scattering for X >/Z, 
(T ~ Ts), where Ks is the interaction parameter at the 
spinodal temperature Ts. This divergence and its varia- 
tion with ~bi define the phase boundary for the block 
copolymer. The nature and controlling factors of this 
phase boundary relative to that for a homopolymer blend 
have been extensively discussed elsewhere 15. 

Equation (6) is a simplified form since it omits the 
random thermal fluctuations discussed by Cook 24. 
Equation (6) further assumes that the Onsager coefficient 
is Q-independent, which may be valid for early stages of 
phase separation and a shallow quench, i.e. to tempera- 
tures where g >/Xs. Despite these apparent simplifications, 
equation (6) is sufficient to analyse the experimental data. 

The influences of the polymer-polymer interaction 
parameter X and Lo on the variation of R(Q)/Q 2 are 
instructive and are shown in Figures la and lb. In point 
of fact the important parameter determining the position 
with respect to the phase boundary is the product NZ. 
For values of N z < N z s ,  R(Q) is negative. Now 
R(Q)/LoQ 2 is the thermodynamic driving force for the 
growth of the concentration fluctuation with wavevector 
Q/2n. Negative values indicate that these fluctuations do 
not grow but decay, i.e. the system remains stable to con- 
centration fluctuations of this wavevector. For N x > NZs 
a very different situation prevails; there is a region of Q 
wherein R(Q)/Q z is positive and the concentration 
fluctuations will grow, eventually leading to phase 
separation. However, these growing concentration fluctu- 
ations have upper and lower critical boundaries to their 
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Figure 1 (a) Influence of Z on R(Q)/Q2; z values marked on each 
curve, Rg= 143 A, tpps = 0.2, N = 1153, L =  1000A 2 s -1. (b) Influence 
of Onsager coefficient Lo on R(Q)/Q 2. Values of Lo (A 2 s - l )  marked 
on each curve; Z = 0.03; all other parameters as in (a) 

wavenumbers calculable from the values Qc, and Qcl 
marked on Figure 1 a. Outside these fimits the concentration 
fluctuations decay and do not contribute to the phase- 
separation dynamics. It should be made clear that 
negative values of R(Q), whether arising from a quench 
within the disordered regime or observed at a Q value 
outside the critical limits for a quench below the spinodal 
curve, do not lead to a reduction in S(Q) in any range 
of Q. In truth, equation (6) is an oversimplification; if 
R(Q) is positive then at t = ~ the scattered intensity is 
infinite; conversely, if R(Q) were negative the scattered 
intensity would be zero at infinite time following a 
quench. Equation (6) may be modified 25 to take this into 
account: 

I(Q, t) = [I(Q, O) - I(Q, or)] exp[2R(Q)t] + I(Q, oo) 
(6a) 

where I(Q, ~ )  is determined by the scattering law S(Q), 
which prevails at the new equilibrium temperature 
following a quench. Equation (6a) now exhibits the 
correct limiting behaviour whether R(Q) is positive or 
negative. The sign of R(Q) depends on S(Q). Within the 
homogeneous temperature region, equation (7) is always 
positive and hence R(Q) is always negative. When the 
system is quenched to a temperature below the micro- 
phase-separation temperature, equation (7) becomes 
divergent over the finite range of Q between Qc~ and Qcu. 
This results in R (Q) becoming positive; i.e. the concentra- 
tion fluctuations between these wavelengths grow in 
amplitude and eventually result in phase separation. 

Comparison with linear Cahn-Hilliard theory 
As originally published, the Cahn-Hilliard 7 theory is 

a macroscopic description and has no direct relation to 
events at a molecular level. Extensions to the theory have 
been made by de Gennes 8, Pincus 9 and particularly 
Binder 1° for polymer blends. These authors were par- 
ticularly concerned with using reptation dynamics in 
discussing spinodal decomposition. However, we can 
write the identity: 

R(Q)-- -M(d2A/dc2)Q 2 - 2 M K Q  4 (11) 

where M = mobility term, A = Helmholtz free energy and 
K = gradient free-energy term. The Onsager coefficient 
L 0 and M are related by: 

M = LoV~e/RT (12) 

Consequently, taking the analogy further, the effective 
diffusion coefficient can be calculated from the Q value 
where the maximum scattering intensity is observed 
during the demixing process, Qm, using the relation: 

Deff = - 2R(Qm)/Q 2 (13) 

Binder 1° provides equations that are identical in form to 
the Cahn-Hilliard equations but are couched in terms 
of the diffusion coefficients of the individual components 
of the homopolymer blend. Moreover, he provides 
equations for the Onsager coefficient Lo using molecular 
parameters of the molecules. 

EXPERIMENTAL 

Polymer preparation 
Linear diblock copolymers of deuterostyrene and 

isoprene were prepared using high-vacuum techniques 
and n-butyllithium as initiator. Benzene was used as the 
polymerization solvent and the reaction was terminated 
by addition of methanol. After isolation and drying under 
vacuum, the copolymers were analysed by elemental 
analysis and u.v. spectrometry. Molecular-weight dis- 
tributions were obtained by size exclusion chromato- 
graphy and absolute molecular weights obtained from 
membrane osmometry. Table 1 reports the composition 
and molecular weights of the block copolymer used in 
this study. 

Small-angle neutron scatter&g 
All SANS data were collected using the D11 diffracto- 

meter at the Institut Laue-Langevin, Grenoble, France. 
For the purposes of time-resolved scattering following a 
quench from a high temperature to a lower one, it was 
necessary to construct a two-stage cell jacket, a schematic 
diagram of which is shown in Figure 226 . The block 
copolymer sample (vide infra) was enclosed in a quartz 
cell placed in a light metal carrier at the end of a rod. 
The carrier plus sample were initially held in the small 
upper cell by a solenoid. Circulation of silicone oil from 
an external thermostat equilibrated the copolymer to a 
temperature well above the order-disorder temperature. 

Table 1 Styrene-isoprene block copolymer characteristics 

Weight fraction styrene Mw/lO 3 M,/IO 3 

0.19 85.63 82.14 
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Figure 2 Schematic diagram of heating cell arrangement used in 
small-angle neutron scattering experiments 

After a suitable equilibration time (15-30min),  the 
current to the solenoid was switched off and the cell plus 
carrier fell under gravity into the massive lower jacket 
thermostatted at a lower temperature. As the cell 
assembly fell an optoelectronic switch was triggered 
which started the counting electronics of the neutron 
detector immediately the cell was in position. The 
electronics could be 'gated' such that scattered intensities 
were collected for a series of individual time frames after 
the trigger pulse. On completion of data collection the 
whole cycle was repeated and the counts from the same 
time frame added together. Usually, it was necessary to 
repeat this cycle at least 10 times to obtain an acceptable 
signal-to-noise ratio. Time frame widths were variable 
between a minimum of 2 s and a maximum of 32 s, and 
a maximum of 32 frames were possible, i.e. the shortest 
time observable was ,-~ 2 s, the longest --~ 17 min. Correc- 
tions to the data were made for beam attenuation due 
to transmission and scattering from the quartz of the cell. 

For time-resolved scattering experiments to be success- 
ful, it is important to maximize the efficiency of heat 
transfer to or from the system. With this in mind, our 
experiments were made on concentrated solutions of the 
block copolymer in cyclohexane. The presence of solvent 
molecules aids heat transfer; moreover, the presence of 
solvent reduces the viscosity, thereby enabling an easier 
transition to or from the homogeneous phase. Addition- 
ally, the presence of solvent reduces Z, and thus the 
transition temperature to the homogeneous phase be- 

Table 2 Scattering length densities of components of copolymer 
solutions 

Component p (I0- lo cm-2) 

d-Styrene 6.30 
h-Isoprene 0.27 
d-Cyclohexane 6.72 
h-Cyclohexane -0.28 

comes accessible at a lower temperature. As a counter 
to these advantages, the reduction in viscosity reduces 
the time range over which the microphase separation 
may be observable. Table 2 gives the scattering length 
densities of components in the block copolymer solution. 
The deutero isomer of cyclohexane was incorporated into 
the solvent mixture at mole fraction of 0.078. This solvent 
mixture has the same scattering length density as 
hydrogenous isoprene and therefore the excess scattering 
over that of the background was not complicated by 
different contrast factors for the two blocks with the 
solvent. The concentration range of the solutions studied 
was from 50% (w/w) to 77% (w/w) block copolymer. 
Solutions were prepared by placing the desired amount 
of block copolymer in a I mm path length quartz cell 
fitted with a graded glass seal. To this was added a small 
quantity of 2,6-di-butyl-4-methylphenol as antioxidant. 
The correct amount of the C6H12/C6Di2 mixture was 
added and the cell attached to a vacuum line. After 
freezing in an acetone/solid carbon dioxide bath, the cells 
were evacuated and then dry nitrogen introduced. After 
this procedure, the cells were then flame sealed and stored 
at 333 K with occasional agitation for a long period 
before SANS measurements were made on the solutions. 

For the block copolymer specimen used, the scattering 
patterns were radially isotropic around the centre of the 
detector. These data were radially regrouped using 
computer programs specific to that purpose; the final 
form of the data was as a scattering profile of intensity 
as a function of scattering vector Q. 

RESULTS 

Thermal response 

Before undertaking the time-resolved SANS experi- 
ments, it was necessary to determine the thermal response 
of the apparatus following a quench. For this purpose a 
cell was filled with silicone oil and a thermocouple 
inserted into it. This was then placed in the carrier and 
the whole inserted into the upper cell jacket of Figure 2, 
which was thermostatted at 374 K. When the tempera- 
ture of the quartz cell and its contents were at equilibrium, 
the carrier plus cell was allowed to fall into the lower 
jacket thermostatted at a known lower temperature. The 
sample cell temperature was recorded at 5 s intervals until 
it had reached the temperature of the lower jacket. This 
was performed for six different temperatures of the lower 
jacket in the range 324 to 368 K. Figure 3 shows the 
variation of temperature as a function of time for all of 
the final temperatures studied. Each curve was describ- 
able by the equation: 

r T ( t ) -  Tf] / (T  i -- Tf)= exp(- - t / r )  (14) 

where T(t )  is the temperature at time t after a quench 
from an initial temperature Ti to a final temperature Tf 
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This simulation suggested that, for our apparatus, the 
exponential growth in intensity following a quench 
should be observable ~ 20 s after the quench. We also 
investigated the thermal response of the apparatus 
following a sudden increase in temperature. For  the same 
temperature difference as the quench in Figure 4, the 
relaxation time for a sudden increase in temperature was 
~56  s. Such long relaxation times make positive tem- 
perature jumps unfeasible as a method of investigating 
the short-time kinetics of phase transitions in block 
copolymer systems. 

Time-resolved scattering 
SANS intensities as a function of time following a 

quench were recorded for copolymer solutions with 
copolymer concentrations of 50, 58, 60 and 71% w/v; 
these are named $50, $58, $60 and $71 respectively. 
Earlier equilibrium data had provided the microphase- 
separation temperature (MST). Figure 5 shows typical 
examples of the change in scattering profile observed for 
a quench within the disordered region, i.e. Tf > MST 
and for a quench into the temperature range where a 
microphase-separated state exists (Tf < MST). For the 
former case, Figure 5a shows the expected behaviour: an 
increase in intensity over all Q values as time increases, 
and a narrowing of the peak as time increases. In the 
main these observations are also true for a quench to 
Tf<MST (Figure 5b); however, there is a major 
difference. Close examination of the scattered intensities 
at very low Q values (<0.01 A -1) reveals that the 

Figure 4 Influence on thermal relaxation time on the increase in 
intensity for a quench from 374 K to 324 K; Q = 0.02 A-1.  Values of 
z are marked on each curve 

and z is the relaxation time of the process z7. Analysing 
the data in Figure 3 according to equation (14) gave a 
mean relaxation time of 14.3 s with a standard deviation 
of 0.7 s for all quenches. The predicted influence of such 
a non-ideal temperature drop on the scattered intensity 
for a quench within the one-phase region was calculated 
using a multistep temperature jump procedure. For  this 
purpose, the scattering at a time t~ after the quench is 
related to that for time t j_ 1 by the equation: 

I(Q, tj) = I(Q, tj_ 1) exp[2Q2R(Q, Tj_ 1)] (15) 

where R(Q, Tj_ 1) is the relaxation rate constant of the 
copolymer system at time t j_ 1 where the temperature is 
Tj.-1 (ref. 27). Evidently, to utilize equation (15), the 
temperature variation of R(Q) must be known. We have 
obtained this from data for one of our specimens (vide 
infra). The temperature at a time t j_ 1 is calculated from 
equation (15) for known values of Ti and Tf and an 
assumed value of z. This temperature was then used to 
evaluate R(Q, Tj_I) and subsequently to calculate 
I(Q, ti); hence the influence of the relaxation time on the 
scattering as a function of time could be calculated. Fi#ure 
4 shows such curves calculated for a fixed value of Q and 
for a deep quench. Evidently, at short times the scattered 
intensity has a non-exponential growth, and the extent 
of this region grows as the relaxation times increase. 
However, at sufficiently long times following the quench, 
the growth in scattered intensity becomes exponential 
and of the same slope no matter what the value of z. 
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Figure 5 (a) Variation in intensity with time after a quench from 
382 K to 337 K for copolymer $58. (b) As in (a) for copolymer $71 
quenched from 374 K to 333 K 
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theory applies, then equation (13) can be written as: 

R(Q)/Q 2 = Dell - Q2/2Q2] (16) 

whence De = lim R(Q)/Q 2. 
Figures 7 to 10 show such plots for the four different 

concentrations investigated here. For the two lower 
concentrations, $50 and $58, the variation of R(Q)/Q 2 
is very similar to that observed for homopolymer blends 
by small-angle light scattering. Conversely, the plots of 
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intensities here decrease with increased time. Notwith- 
standing this different phenomenology, the dependence 
of the scattered intensity on time is initially exponential 
for both circumstances. Figure 6 shows this for selected 
Q values; very short-time data (< 8 s) have been omitted, 
since non-exponential behaviour is observed due to the 
thermal relaxation time of the apparatus as discussed 
above. Linear least-squares analysis of the linear portions 
of such curves gave the value of R(Q) in equation (6). 
An initial analysis of the values of R(Q) can be obtained 
by plotting R(Q)/Q 2 as a function of Q2. Equation (4) 
shows that such a plot will reveal information on the 
product Lo[-S(Q)-I] ,  and if the time-dependent 
Ginzburg-Landau treatment (TDGL) in combination 
with RPA theory 2t is correct, then a plot similar to Figure 
1 should be obtained. If the original Cahn-Hilliard 
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plot of D=, as a function of polymer concentration. 
Reptation theory 2a predicts a relation between diffusion 
coefficient and polymer concentration of: 

D e f  t ~ C - a  (18) 

It is evident from Figure I 1 that the exponent in equation 
(18) does not have a constant value. For the normalized 
concentration range 0.01 ~< C/Cs6 6 ~ 1, the slope indi- 
cates an  exponent of - 5 ,  whereas for higher concentra- 
tions a much higher value is indicated. The non- 
observation of a constant value for the exponent in 
equation (18) is not unusual in studies of diffusive 
processes in concentrated polymer systems 29'3°. For 
good solvent systems, reptation theory predicts: 

Docc -175 (19) 

while for theta situations, the relation: 

D oc c- 3 (20) 

is expected. 
The 'unusual' values seen here may not be unexpected 

in view of the rather different situation that prevails for 
the block copolymer, i.e. in very good solvent conditions 
for the polyisoprene block but poorer for the polystyrene 
block. 

I [ I 1 
0 I0 20 

0 2 (x IO-4~ -z) 

Figure 10 R(Q)/Q 2 as a function of Q2 for $71; quench temperatures 
as indicated 

R(Q)/Q 2 for solutions $66 and $71 display the expected 
maximum at a finite Q value, in qualitative agreement 
with the theoretical predictions of TDGL theory. 

Effective diffusion coefficients 
In principle, equation (16) could be used to obtain D~ 

for solutions $50 and $58 from Figures 7 and 8. However, 
the curvature in these plots and the rapid increase in 
R(Q)/Q 2 at low Q values mean that such values will be 
subject to large error. Equation (13) has been used to 
calculate De at Qm, where Qm is the value at which the 
maximum scattered intensity was observed in the scatter- 
ing profile following the quench. The values obtained for 
all solutions studied are recorded in Table 3. Since the 
interaction parameter X appears in the expression for 
S(Q) in R(Q), then De will depend on Z. In an earlier 
paper we evaluated effective values of Z and its tempera- 
ture dependence for the copolymer solutions studied here. 
Different values of A and B in equation (17) are obtained 
for different concentrations of copolymer: 

z = A + B / T  (17) 

Values of De at constant X were interpolated from the 
values given in Table 3 by using values of T calculated 
from equation (17) and use of the appropriate values of 
A and B valid for each solution. Values of T in equation 
(17) were chosen such that )~ff in solutions $50, $58, $66 
and $71 were identical. Values of T chosen were such 
that the copolymer systems were all in the homogeneous 
region. Figure I I shows the resulting double logarithmic 

Table  3 Effective diffusion coefficients calculated from R(Qm)/Q2m 

Copolymer Quench temperature (K) Def f (A 2 s -1) 

$50 359.7 3.4 _+ 1.6 
353.0 5.3 +_ 1.1 
344.0 19.3 _+ 0.7 
336.3 16.0 + 0.5 
323.2 21.5 + 1.6 

$58 363.0 11.4 _+ 1.3 
344.4 19.0 __ 0.8 
336.6 26.4 + 0.8 

$66 362.0 12.6 _.+ 0.8 
353.4 23.5 + 0.9 
345.0 13.0 _ 0.5 
334.9 20.5 _+ 0.5 

$71 368.7 0.9 + 0.6 
363.2 3.0 + 0.6 
356.4 7.0 _ 0.8 
353.2 12.4 _+ 1.3 
350.7 11.5 _+ 0.2 
343.8 14.8 _ 0.4 
333.4 20.8 __+ 0.8 
323.2 24.1 ___ 0.5 

x=O.OI 

$ 
= 

o -  

g 
_J 

-I - 

I I 
-O I 0 

Log (c /c,e6 ) 

Figure 11 Double logarithmic plot of effective diffusion coefficient at 
constant ;( as a function of concentration 
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Time-dependent G inzbur g- Landau analysis [ 
Our aims in these experiments were to test the 2o 

applicability of the Ginzburg-Landau approach sug- 
gested by Hashimoto 21. The use of concentrated solu- 
tions leads to a smoothing of the monomer density 
fluctuations, and hence it is more appropriate to use the o 
original coarse-grained free-energy dependence on Q 
derived by Leibler x 2 using RPA theory. These expressions 
pertain to the weak segregation limit. Evidently, this type -20 
of analysis cannot be used for solutions $50 and $58 and 
we speculate on the reasons for the observed behaviour 
of R(Q)/Q 2 in these cases below. For solutions $66 and 
$71, the variation of R(Q)/Q 2 with Q2 is as predicted by = 
the TDGL approach with one difference. In neither ~ o 
solution do we observe an upper critical value of the % 
scattering vector Q above which R(Q) is negative. Instead, 
R(Q) changes somewhat abruptly to a constant almost 
zero value. We have neglected random thermal density 
fluctuations in our approach here and these could ao 
contribute to R(Q) at higher Q values leading to the 
positive values of R(Q) observed. However, we have 
subtracted the incoherent scattering (that of the solvent 
mixture) and this has been calculated to be much larger 0 
than thermal density fluctuations. Careful examination 
of Figure 10 for a deep quench of solution $71 reveals 
evidence for a second much weaker maximum in R(Q)/Q 2 -20 
at higher values of Q. It is well known that these systems 
have a highly ordered microphase-separated state with 
multiple 'Bragg' peaks. Consequently, we believe that 
some incipient long-range ordering takes place during o 
the relaxation following a quench and this produces very 
weak high-Q scattered intensity, which leads to non- 
negative values of R(Q). Hence, for the evaluation of Lo 
we have restricted ourselves to data in the region 
0~<Q~<2.5 x 10 -2 A -1. Equation (4) was fitted to the 
data by a non-linear least-squares method, the value of 
Xeff in S(Q) pertaining to the initial temperature before 
the quench. Typical examples of the quality of the fits 
are shown in Figure 12, the values of L o obtained being 
listed in Table 4. In general, values of L o increase as the 
quench depth increases, and since this is related to the 
mobility, then the interdiffusional mobility increases as 
the quench depth increases. 

To our knowledge there are no published values of L o 
in block copolymer systems available; indeed, there are 
none reported for homopolymer blends since Def f is 
generally all that is reported. However, Binder 1° has 

Table 4 Onsager coefficients from generalized Ginzburg-Landau 
analysis 

Initial Quench 
temperature temperature 

Polymer (K) (K) L o (A z s -  1) 

$66 380.0 

$71 374.3 

362.0 760 _ 3 
353.4 1790 _+ 3 
345.0 1280 ___ 40 
334.9 3010 ___ 7 

368.7 75 ___ 1 
363.2 202 + 14 
356.4 1960 + 1 
353.2 1390 + 70 
350.7 2220 + 90 
343.8 3440 ___ 150 
333.4 5300 + 250 
323.2 6760 + 260 

~ 0 0 0 0 0 0 0 

374---=- 356 K 

I I I 
5 I0 15 

0 ~ (x 10"4~ -2] 

000 O0 0 0 0 0 0 0 

374 "~="333 K 

I I I 
5 I0 15 

O2(x 10-4,~ -2) 

Figure 12 Fit of equation (4) to experimental values of R(Q) for 
solution S71 

provided a relationship for L o of homopolymer blends: 

Lo(Q) = (1 - ~b)LoA(Q ) (21) 

LoA(Q ) = ca2q~ WAASA(Q)/NA (22) 

where LOA = the Onsager coefficient for pure polymer A, 
q~ = volume fraction of polymer A in the blend, a = statis- 
tical step length of polymer A and WAA = mobility of a 
subunit in polymer A. Note that this factor does not refer 
to high-frequency intramolecular dynamics but to the 
(relatively) long-wavelength motions of subunits of the 
molecule, which are ultimately responsible for reptation. 
The Q dependence of Lo is explicit in equations (21) and 
(22) and takes the form suggested by de Gennes s and 
Pincus 9. In estimating Lo we take the Q = 0 limit, where 
SA(Q) = 1, a is typically 10-20/~, c is constant of order 
unity and Binder 1° estimates 109 ~< WAA ~< 1011 S-  1 ; thus 
for a degree of polymerization NA of 100, Lo is then 
estimated to be ~ 108-10 l° A 2 s -1. Our values in Table 
4 are some 5-7 orders of magnitude smaller than those 
predicted for homopolymer blends. This may be due to 
the fact that during interdiffusion accompanying relaxa- 
tion the blocks in the copolymer molecules are attempting 
to locate themselves in different regions of space. The 
connectivity between the blocks prevents this interdiffu- 
sign being as rapid as in the homopolymer blend case, 
and thus Lo is reduced. 

Thermodynamic driving force and growth rates 
Values of the Onsager coefficient together with experi- 

mental values of R(Q) and the radius of gyration Rg, 
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obtained from the equilibrium scattering at the high 
initial scattering, can be used to evaluate the Q depen- 
dence of the thermodynamic driving force for the growth 
of the order parameter, i.e. the parameter R(Q)/LoQ 2. 
Furthermore, the dimensionless factor describing the 
growth rate, R(Q)RZ/Lo, of the fluctuations with wave- 
length of order Q/2n are also calculable. Figures 13 and 
14 show each of these parameters calculated from our 
data for selected temperatures. Surprisingly, the thermo- 
dynamic driving force seems to be relatively weak and 
diffuse when compared to the growth rate obtained using 
the same value of L o. This may be due to the use of 
concentrated solutions making the concentration fluctua- 
tions from region to region less sharp even though the 
value of Z obtained suggests that a strong segregation 
may prevail. It is also clear that the wavevector of 
maximum growth rate does not correspond to that where 
the maximum thermodynamic driving force is observed. 
The expression for the growth rate is dominated by 
R2g(~Qm 2) and hence this will have its maximum very 
close to the experimentally observed maximum in the 
intensity as a function of Q. However, both Lo and R(Q) 
are obtained from a simplified theory that omits the 
dependence of free energy on terms in Q of order greater 
than 2, and it is assumed that L o is Q-independent. 

004 574 = 356 K 

0 -- ~ 0 0 0  000000000 

-0.04 -- / / ~  
I i I 

0 2 4 
QR~ 

Figure 13 Wavevector dependence of concentration fluctuation 2 2 growth rate, R(Q)Rg/L o, and thermodynamic driving force, R(Q)/Q L o, 
for $66. Quench temperatures indicated. Full curves are calculated from 
values of R(Q), £o, Rg; points are experimental values of R(Q)/Q2Lo 

0.1 

R ( Q ) ~  381-'---~345 K 

O- ~ ~"~Q42~£~Ooooo Ooooo 

L -o, II 
0 2 4 
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Figure 14 Wavevector dependence of fluctuation growth rate and 
thermodynamic driving force for copolymer $71 (see Figure 13) 

Inclusion of such additional factors could well shift the 
maximum in R(Q)/LoQ 2 to be coincident with the 
observed maximum growth rate in the SANS profiles. 

CONCLUSIONS 

We have demonstrated that the observation of the 
relaxation to a new equilibrium state in a block 
copolymer following a quench from a high temperature 
is observable by time-resolved small-angle scattering. The 
intensity of scattering follows an initially exponential 
dependence on the time after the quench and this 
dependence may be negative or positive. Decreases in 
scattered intensity (negative dependence on time) are 
observed for high copolymer concentration and low 
values of the scattering vector Q. For the lower copolymer 
concentrations ( ~< 58%), there was no maximum in R(Q), 
the relaxation rate constant, as a function of Q2. There 
could be two sources for this. First, the osmotic swelling 
of the copolymer could be so large that the maximum 
in R(Q) is confined to a region of very low Q, which was 
not accessible in the instrument geometry used here. 
Secondly, the random-phase approximation is strictly 
only valid for bulk polymer, and there may well be a 
lower limit to the concentration below which it is 
inapplicable since it is no longer a true description of the 
polymer system. 

At higher copolymer concentrations, there is qualita- 
tive agreement of the combined time-dependent Ginz- 
burg-Landau theory and the random-phase approxima- 
tion, in that a maximum in R(Q.) is observed and a lower 
limit to positive values of R(Q) is clearly evident. What 
is not observed is the upper Q limit to the growth of 
concentration fluctuations; this we attribute to the 
incipient long-range ordering becoming evident in the 
scattered intensity and hence increasing R(Q) values. The 
values of the Onsager coefficients obtained are in the 
range 700 ~< Lo/A 2 s- 1 ~< 7000. These values are several 
orders of magnitude less than predicted values for 
homopolymer blends. In these latter systems, however, 
the thermodynamic and hydrodynamic situations are 
quite different. Lastly, the thermodynamic driving force 
factor and the growth rate factor calculated from values 
of Lo, Rg and R(Q) show the expected variation with Q. 
The maxima are not coincident but for the deeper 
quenches they tend to approach a common value of Q. 
Furthermore, for the deeper quenches, there is a slight 
narrowing of the thermodynamic driving force and 
growth rate curves, indicating that the fluctuation 
wavelength equivalent to Qm is favoured at the expense 
of others. 

All of these conclusions above need to be tempered by 
the simplifications we have made, i.e. neglect of thermal 
fluctuations and more importantly the assumption of a 
Q-independent Onsager coefficient. Nonetheless, it is 
evident that it is possible to observe the processes leading 
to microphase separation in block copolymers at a 
molecular level in real time. 
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